Abstract

Acyclovir (ACV), a model drug for this study, is one of the most effective drugs against viruses of the herpes group. Absorption of orally administered ACV is variable and incomplete, with a bioavailability of ca. 15-30%. The drug is absorbed in the duodenum after oral administration and hence, preparation of a floating drug delivery system (FDDS) for ACV may increase oral absorption of the drug. ACV matrix tablets (200 mg) containing an effervescent base (sodium bicarbonate and citric acid) and a binary combination of hydroxypropyl methylcellulose (HPMC) K4M with carbopol or sodium carboxymethyl cellulose (Na CMC) or polyvinylpyrrolidone (PVP) and/or sodium alginate were prepared by the direct compression method. The tablets were evaluated for physicochemical properties and in vitro floating ability (floating lag-time and duration), bioadhesiveness and drug release. The drug release studies were carried out in 0.1 N HCl (pH 1.2) at 37±0.5°C. At appropriate time intervals, samples were withdrawn and assayed spectrophotometrically at λ(max)=259 nm. The floating test showed tablets containing 15% effervescent base had a floating lag time of 10-30 s and a duration of floating time of 24 h. The formulations containing HPMC-PVP, HPMC-Na CMC, HPMC-carbopol, and HPMC-sodium alginate released about 60-90% of their drug content during a 12-h period. Increasing carbopol caused slower drug release. We concluded that the proposed tablets with 15% effervescent base, 20-30% HPMC, 30% Na CMC (and/or 20% PVP or 20% sodium alginate) showed good floating and drug release properties in vitro, and should be considered as FDDS for ACV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call