Abstract

A general approach for predicting indicator and pathogen decay in surface waters was developed using Bayesian hierarchical modeling, a persistence database, and a two-parameter model form. The resulting hierarchical regression describes general persistence behaviors with target-level intercepts and population-level coefficients. Uncertainty factors calculated with the approach suggest fecal indicator bacteria (FIB) and pathogenic bacteria persist similarly in surface waters, but median virus and protozoa persistence metrics may be 2–3 times greater than FIB in similar conditions. The two-parameter model underpinning the approach was used to identify drivers of these differences. Virus decay rates were shown to taper off more quickly than FIB, whereas protozoa were associated with longer initial periods of minimal decay. Despite the low accuracy of the hierarchical model compared to models fit to individual datasets, this approach addresses a critical gap for water management decision-making as site-specific and pathogen-specific persistence data are uncommon in water monitoring practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.