Abstract
BackgroundCustom orthoses are becoming more commonly prescribed for upper and lower limbs. They require some form of shape-capture of the body parts they will be in contact with, which generates an STL file that designers prepare for manufacturing. For larger devices such as custom-contoured wheelchair cushions, the STL created during shape-capture can contain hundreds of thousands of tessellations, making them difficult to alter and prepare for manufacturing using mesh-editing software. This study covers the development and testing of a mesh-to-surface workflow in a parametric computer-aided design software using its visual programming language such that STL files of custom wheelchair cushions can be efficiently converted into a parametric single surface.MethodsA volunteer in the clinical space with expertise in computer-aided design aided was interviewed to understand and document the current workflow for creating a single surface from an STL file of a custom wheelchair cushion. To understand the user needs of typical clinical workers with little computer-aided design experience, potential end-users of the process were tasked with completing the workflow and providing feedback during the experience. This feedback was used to automate part of the computer-aided design process using a visual programming tool, creating a new semi-automated workflow for mesh-to-surface translation. Both the original and semi-automated process were then evaluated by nine volunteers with varying levels of computer-aided design experience.ResultsThe semi-automated process showed a 37% reduction in the total number of steps required to convert an STL model to a parametric surface. Regardless of previous computer-aided design experience, volunteers completed the semi-automated workflow 31% faster on average than the manual workflow.ConclusionsThe creation of a semi-automated process for creating a single parametric surface of a custom wheelchair cushion from an STL mesh makes mesh-to-surface conversion more efficient and more user-friendly to all, regardless of computer-aided design experience levels. The steps followed in this study may guide others in the development of their own mesh-to-surface tools in the wheelchair sector, as well as those creating other large custom prosthetic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.