Abstract

We have employed whole genome sequencing to define and evaluate a core genome multilocus sequence typing (cgMLST) scheme for Acinetobacter baumannii. To define a core genome we downloaded a total of 1,573 putative A. baumannii genomes from NCBI as well as representative isolates belonging to the eight previously described international A. baumannii clonal lineages. The core genome was then employed against a total of fifty-three carbapenem-resistant A. baumannii isolates that were previously typed by PFGE and linked to hospital outbreaks in eight German cities. We defined a core genome of 2,390 genes of which an average 98.4% were called successfully from 1,339 A. baumannii genomes, while Acinetobacter nosocomialis, Acinetobacter pittii, and Acinetobacter calcoaceticus resulted in 71.2%, 33.3%, and 23.2% good targets, respectively. When tested against the previously identified outbreak strains, we found good correlation between PFGE and cgMLST clustering, with 0–8 allelic differences within a pulsotype, and 40–2,166 differences between pulsotypes. The highest number of allelic differences was between the isolates representing the international clones. This typing scheme was highly discriminatory and identified separate A. baumannii outbreaks. Moreover, because a standardised cgMLST nomenclature is used, the system will allow inter-laboratory exchange of data.

Highlights

  • Acinetobacter baumannii is a recognised serious nosocomial pathogen and is isolated frequently in intensive care unit settings where it is a cause of serious infections such as ventilator-associated pneumonia, wound and bloodstream infections [1]

  • A total of 53 carbapenem-susceptible and -resistant A. baumannii isolates from well-described hospital outbreaks occurring throughout Germany were used, some of which have been the subject of a previous report (Table 1) [23]

  • Species variability was checked by Bayesian analysis of population structure (BAPS) analysis based on 913 ‘Oxford‘ multilocus sequence typing (MLST) ST which resulted in 8 partitions with ST 262 being the only member of BAPS partition 8

Read more

Summary

Introduction

Acinetobacter baumannii is a recognised serious nosocomial pathogen and is isolated frequently in intensive care unit settings where it is a cause of serious infections such as ventilator-associated pneumonia, wound and bloodstream infections [1]. It affects mainly severely debilitated patients and is typically selected by prior antimicrobial therapy [2]. A. baumannii shares several characteristics with methicillin-resistant Staphylococcus aureus (MRSA). Core genome MLST scheme for A. baumannii

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call