Abstract

In this research, eight different 3D weft-knitted fabrics were developed and evaluated. 3D fabrics have been knitted on circular weft-knitting machines with two different gauges: 20E gauge and 28E gauge. Three different raw materials were used for the fabric’s production: high molecular mass polyethylene (HPPE) yarn and 0.05 mm diameter steel wire in the outer layers (for the front and reverse) and polyamide yarn in the binding layer. The experiments were conducted on the developed 3D knitted fabrics to determine the fabric’s resistance to mechanical risks such as circular blade cut, puncture, abrasion, and also to evaluate the comfort parameter, such as air permeability. It was defined that 3D weft-knitted fabrics best results on tests: circular blade cut, puncture and abrasion resistant were achieved using HPPE yarn twisted with steel wire, higher mass per unit area with more significant amount of steel wire. According to the standard EN 388:2003, three samples of developed 3D weft-knitted fabrics had the highest 5th blade cut and the highest (4th) abrasion resistance level. All of them had the highest (4th) level of puncture resistance. 3D fabrics knitted on a circular weft-knitting machine of gauge 28E ensured 1.3–2.1 times greater blade cut and 4.9–12.1 times greater abrasion resistance result, than fabrics knitted on gauge 20E, due to a higher stitch density, higher mass per unit area, density and fabric’s thickness. But on the other hand, these parameters lowered air permeability by 20.2–43.0%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call