Abstract
IntroductionNematostella vectensis, a member of the cnidarian class Anthozoa, has been established as a promising model system in developmental biology, but while information about the genetic regulation of embryonic development is rapidly increasing, little is known about the cellular organization of the various cell types in the adult. Here, we studied the anatomy and development of the muscular system of N. vectensis to obtain further insights into the evolution of muscle cells.ResultsThe muscular system of N. vectensis is comprised of five distinct muscle groups, which are differentiated into a tentacle and a body column system. Both systems house longitudinal as well as circular portions. With the exception of the ectodermal tentacle longitudinal muscle, all muscle groups are of endodermal origin. The shape and epithelial organization of muscle cells vary considerably between different muscle groups. Ring muscle cells are formed as epitheliomuscular cells in which the myofilaments are housed in the basal part of the cell, while the apical part is connected to neighboring cells by apical cell-cell junctions. In the longitudinal muscles of the column, the muscular part at the basal side is connected to the apical part by a long and narrow cytoplasmic bridge. The organization of these cells, however, remains epitheliomuscular. A third type of muscle cell is represented in the longitudinal muscle of the tentacle. Using transgenic animals we show that the apical cell-cell junctions are lost during differentiation, resulting in a detachment of the muscle cells to a basiepithelial position. These muscle cells are still located within the epithelium and outside of the basal matrix, therefore constituting basiepithelial myocytes. We demonstrate that all muscle cells, including the longitudinal basiepithelial muscle cells of the tentacle, initially differentiate from regular epithelial cells before they alter their epithelial organisation.ConclusionsA wide range of different muscle cell morphologies can already be found in a single animal. This suggests how a transition from an epithelially organized muscle system to a mesenchymal could have occurred. Our study on N. vectensis provides new insights into the organisation of a muscle system in a non-bilaterian organism.
Highlights
Nematostella vectensis, a member of the cnidarian class Anthozoa, has been established as a promising model system in developmental biology, but while information about the genetic regulation of embryonic development is rapidly increasing, little is known about the cellular organization of the various cell types in the adult
Muscle cells are a major derivative of the mesoderm in Bilateria, but can be found in two non-bilaterian phyla, the Ctenophora and the Cnidaria
As N. vectensis continues to develop into a major cnidarian model organism, we need to reach a deeper understanding of the composition, connections and differentiation kinetics of the different cell types at various developmental stages
Summary
Nematostella vectensis, a member of the cnidarian class Anthozoa, has been established as a promising model system in developmental biology, but while information about the genetic regulation of embryonic development is rapidly increasing, little is known about the cellular organization of the various cell types in the adult. N. vectensis, a representative of the Anthozoa, has been established as an important model for studying embryology, phylogenetic relationships, comparative genomics and the origin of triploblasty [6,7,8]. This makes it a promising addition to the existing group of cnidarian model systems. As N. vectensis continues to develop into a major cnidarian model organism, we need to reach a deeper understanding of the composition, connections and differentiation kinetics of the different cell types at various developmental stages
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.