Abstract
AbstractSubmarine landslides can destroy seafloor infrastructures and generate devastating tsunamis. In spite of decades of research into the functioning of submarine landslides there are still numerous open questions, in particular how different phases of sliding influence each other. Here, we re‐analyze Ana Slide—a relatively small (<1 km3) landslide offshore the Balearic Islands, which is unique in the published literature because it is completely imaged by high‐resolution 3D reflection seismic data. Ana Slide comprises three domains: (a) a source area that is almost completely evacuated with evidence of headscarp retrogression, (b) an adjacent downslope translational domain representing a by‐pass zone for the material that was mobilized in the source area, and (c) the deposit formed by the mobilized material, which accumulated downslope in a sink area and deformed slope sediment. Isochron maps show deep chaotic seismic units underneath the thickest deposits. We infer that the rapid deposition of the landslide material deformed the underlying sediments. A thin stratified sediment unit between three lobes suggests that Ana Slide evolved in two failure stages separated by several tens of thousands of years. This illustrates the problem of over‐estimating the volume of mobilized material and under‐estimating the complexity even of relatively simple slope failures without high‐quality 3D reflection seismic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.