Abstract

This research aimed to acquire doxorubicin loaded zinc oxide nanoflowers (DOX-ZnO-NFs) for intracellular drug cargo possessing a synergistic in-vitro anticancer activity with minimal toxicity. Zinc is the main inorganic metallic component of various enzyme systems and has the possibility of fabrication into the diverse nano-structural forms. An easy absorption and extensive tissue distribution of zinc have made it unique candidate for drug delivery system. Hence, the zinc oxide nanoflowers were prepared with sonochemical-precipitation. The developed system was characterized using the reported methods and was optimized employing design of experiment, coupled with artificial neural network approach. The optimized nanoflowers (DOX-ZnO-NFV) were anionic with particle size of 24 ± 0.05 nm, polydispersity index of <0.5, a zeta potential of −25.68 ± 0.16 mV, yield of 87.40% and encapsulation efficiency of 85.25%. DOX-ZNO-NFV depicted sustained DOX release, around 65.413% release in 30 h at pH 7.4 and assumed Weibull model with its derived parameters, a and b of 22.77 and 0.918, respectively. DOX-ZnO-NFV remained stable on storage for 3 months at 4° C/50% RH and 25° C/60% RH. DOX-ZnO-NFV displayed a zone of inhibition of 13.50 ± 1.25 mm and 25.50 ± 0.98 mm, respectively against gram-positive Staphylococcus aureus and gram-negative Escherichia coli strains, presenting the nanoflowers as self-preservative. DOX-ZnO-NFV exhibited higher in-vitro anticancer activity in Henrietta Lacks cell line, with least hemolysis compared to the free DOX and ZnO-NF. Thus, doxorubicin loaded zinc oxide nanoflowers envisioned to act as better chemotherapeutic cargos with the maximize anticancer activity and minimal toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call