Abstract
The time course of cell differentiation and the presence of histochemically defined areas in brainstem auditory nuclei were examined in developing bullfrogs, Rana catesbeiana, using cresyl violet staining and acetylcholinesterase (AChE) histochemistry. In the medulla, the dorsolateral nucleus (DLN) can be seen as a distinct structure in its adult location only at Gosner stage 40 and beyond. The majority of cells in the DLN are not fully differentiated until late metamorphic climax (stages 45–46) and early postmetamorphosis. The more ventral vestibular nucleus differentiates earlier (stage 37) than the DLN. Adult-like organization of auditory nuclei in the torus semicircularis (TS) of the midbrain cannot be reliably discerned until metamorphic climax stages. Cellular masses in the brainstem reveal AChE from the earliest stage examined (stage 27) but the intensity of staining differs among cell groups. Staining intensity in the DLN is at a peak in recently metamorphosed froglets. The time course of cell differentiation in the DLN precedes slightly or is coincident with the increased, transient presence of AChE. Staining of the superior olive stabilizes at a moderate level in early postmetamorphic stages. Ventral regions of the principal nucleus in the TS stain more intensely than dorsal regions beginning at stage 40. This dorsal-ventral gradient in staining persists in adult stages. There is a transient decline in staining of the laminar nucleus in metamorphic climax stages. Staining intensity in the magnocellular nucleus peaks during stages 40–46 and in early postmetamorphic froglets and then declines in adults, paralleling the pattern seen in the DLN. These data suggest that metamorphic climax and early froglet periods are an important developmental window for major differentiation and maturational events in the auditory brainstem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.