Abstract

Buckling-restrained braces are able to provide significant energy dissipation along with large ductile capacity through their excellent hysteretic behavior. However, due to their lack of recentering capability, buckling-restrained braced frames experience large residual drifts following a strong earthquake, leading to enormous repair costs. To overcome this shortcoming, super-elastic shape memory alloy braces with excellent recentering capacity have been introduced as a viable alternative to steel braces. Nevertheless, their energy dissipation capacity is usually low for seismic applications. This article proposes a robust self-centering energy-dissipative brace to be used in structural frames. The brace is capable of providing adequate energy dissipation capacity in the structure while simultaneously bringing the structure to its original configuration after the earthquake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.