Abstract

Recently, as humans have become increasingly interested in ocean resources, underwater vehicle-manipulator systems (UVMSs) have played an increasingly important role in ocean exploitation. To realize precise operation in underwater narrow spaces, the fly arm underwater vehicle manipulator system (FAUVMS) is proposed with manipulators as its core. However, this system suffers severe dynamic coupling effects due to the combination of small vehicle and big manipulators. To resolve this issue, we propose a robust adaptive controller that contains two parts. In the first part, the extended Kalman filter (EKF) is designed to estimate the system states and predicts external disturbances to achieve adaptive control. In the second part, a chattering-free sliding mode control (SMC) is designed to converge the tracking errors to zero, thus guaranteeing the robustness of the controller. We constructed the simulation platform based on the geometric model of FAUVMS, and various simulations are carried out under different situations. Compared to the traditional methods, the proposed method has a faster convergent speed, a better robustness and adaptiveness to external disturbances, and the tracking errors of positions of the vehicle and each end-effector are much smaller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call