Abstract

BackgroundRecovery of valuable ingredients from black liquor could lead to an environmentally and economically sound bioethanol production technology. In this work, two schemes comprising hybrid membrane systems incorporating ultrafiltration (UF) and nanofiltration (NF) are developed for the recovery of lignin, silica rich and cellulose/hemicellulose hydrolysates byproducts from alkaline pretreated rice straw.MethodsThe first scheme (I) comprises UF, NF and thermal vapor compression (TVC), while, the second scheme (II) includes UF, 2 stages of NF and 2 TVC units. Further treatments are suggested to produce solid byproducts with an economic value. Furthermore, material balance of the two schemes based on 1000 m3/d of black liquor and the main design features and comparative direct cost indicators of the main adopted units were deduced using WT Cost II© software.ResultsResults revealed that about (80–90%) yield of recovered byproducts from both schemes with equivalent amounts of 9.5, 5.5 and 18.5 ton/d of lignin, silica rich and cellulose/hemicellulose hydrolysates dry products, respectively. Moreover, reusable water recovery approaches 26% and 70% for schemes (I) and (II), respectively.ConclusionsFurther, the wastewater generated from scheme (II) is 2.9 times folds scheme (I) which improves the environmental impact of the former. Preliminary cost indicators revealed that both schemes have almost the same total direct capital cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call