Abstract

Olaparib (OLA) is a PARP inhibitor drug which has been recently approved by the Food and Drug Administration (FDA) for the treatment of ovarian and breast cancer. A convenient analytical tool for the quantitation of OLA in its dosage form and plasma samples was urgently needed. This study describes, for the first time, the development of two different label-free and sensitive fluorescence-based platforms for the pharmaceutical and bioanalysis of OLA. These platforms were microwell-assisted with a fluorescence microplate reader (MW-FLR) and high-performance liquid chromatography with fluorescence detection (HPLC-FD). Both MW-FLR and HPLC-FD employed the native fluorescence of OLA as an analytical signal. The MW-FLR involved measuring the fluorescence signals in 96-well white-opaque plates. The HPLC-FD involved chromatographic separation of OLA and duvelisib (DUV), as an internal standard on a Nucleosil-CN HPLC column (250 mm length × 4.6 mm i.d., 5 µm particle diameter) with a mobile phase composed of acetonitrile: water (25:75, v/v) pumped at a flow rate of 1.7 mL/min. Elution of OLA and DUV was detected using a fluorescence detector. The optimal conditions of both MW-FLR and HPLC-FD were established, and they were validated according to the guidelines of the International Council for Harmonization for the validation of analytical procedures. The linear ranges of MW-FLR and HPLC-FD were 25-1000 and 5-200 ng/mL, respectively, with limits of detection of 15 and 1.7 ng/mL, respectively. The accuracy and precision of both platforms were confirmed as the recovery values were ≥98.2% and the relative standard deviations (RSD) were ≤2.89%. Both methodologies were satisfactorily applied to the quantitation of OLA in its commercial dosage form (Lynparza® tablets) and plasma samples with high accuracy and precision. The greenness of both MW-FLR and HPLC-FD was assessed using two different multiple parameter-based metric tools, and the results proved their greenness and adherence to the requirements of green analytical approaches. Both platforms have simple procedures and acceptable levels of analytical throughput. In conclusion, the proposed MW-FLR and HPLC-FD are valuable tools for routine use in quality control and clinical laboratories for the quantitation of OLA for the purposes of pharmaceutical quality control, pharmacokinetic studies, and bioequivalence testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.