Abstract

The four cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators, ivacaftor, lumacaftor, tezacaftor, and elexacaftor, have revolutionised the treatment of CF by direct action on the protein target behind the disease's development. The aim was to develop and validate a quantification method for these CFTR modulators in plasma and breast milk to better understand inter-patient variability in pharmacokinetics and treatment outcome, including the risk of adverse drug reactions. The ability to monitor CFTR modulators in breast milk enables the estimation of the exposure of breastfed infant, with a potential concern for CFTR modulator-induced liver injury. The analysis was performed on a Thermo Vanquish Flex Binary UHPLC system coupled to a high-resolution mass spectrometer (HRMS), Thermo Q Exactive. The analytes were detected using positive electrospray ionisation in full scan mode. After sample preparation by protein precipitation, the supernatant was injected onto the LC system and the analytes were separated using a Zorbax SB-C18 Rapid Res HPLC column (3.5µm, 4.6 × 75mm). This is the first published method for CFTR modulators in breast milk. The validated quantification range for ivacaftor is 0.0050-10µg/mL with a coefficient of variation < 6% and a mean accuracy of 97-106%; for lumacaftor, tezacaftor, and elexacaftor, the validated quantification range is 0.050-100µg/mL with a coefficient of variation < 8% and a mean accuracy 93-106%. A simple and sensitive quantification method for CFTR modulators has been developed and used for routine analysis of human plasma and breast milk samples since 2022.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.