Abstract

Emulsion gels with the mixtures of low-molecular-weight emulsifier (LME) and polymer have attracted much attention in food; however, the LME-polymer interactions in emulsion system are complex and unclear. Here, the interactions between SSL and xanthan in emulsions and the mechanisms of stabilizing emulsions were investigated by using tensiometry, zeta potential, Fourier transform infrared spectroscopy (FTIR), confocal laser scanning microscopy (CLSM), cryo-scanning electron microscopy (cryo-SEM) and rheology. SSL was more efficiently adsorbed on the oil–water interface than xanthan. Interestingly, the honeycomb structure was formed in emulsion gels, which firmly immobilized oil droplets. Furthermore, electrostatic repulsion and hydrophobic interactions between xanthan and SSL facilitated the efficient bonding at interface and in bulk. Both linear and nonlinear rheology strongly supported the fact that the interactions between xanthan and SSL enhanced gel-like viscoelastic structure of emulsion gels. This structure endows excellent stability of emulsion gels under high temperature storage, sealed conditions and pH change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.