Abstract

In this study, a multi-hopper laser deposition system is used to additively manufacture functionally graded Ti-6Al-4V to 304L stainless steel components with a vanadium interlayer. Grain morphology, phase, and composition are mapped along the component gradients with electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDS), and mechanical property changes are assessed utilizing Vickers hardness and nanoindentation. Precipitation of brittle intermetallic compounds such as FeTi and the formation of an Fe-V-Cr sigma phase are confirmed to be the causes of mid-fabrication cracking in the components. Guided by multicomponent phase diagrams, alternate paths in composition space are proposed to strategically avoid unfavorable phase formation along the gradient. Composition-dependent adjustment of process parameters is also proposed to reduce the prevalence of observed powder inclusions, homogenize grain morphology, and improve component mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.