Abstract
The biodegradable antibacterial composite film blended with starch and sodium alginate was developed by solution casting method, using montmorillonite as the fortifier and star anise oil as the bacteriostat. Infrared analysis showed that montmorillonite and star anise oil were successfully incorporated into starch and sodium alginate to form a stable composite film. The addition of 6 wt% montmorillonite could enhance several properties of the films, including barrier properties, optical properties, thermal stability and mechanical properties. Meanwhile, the incorporation of star anise oil made the composite films have antibacterial properties to resist E. coli. Packing cherry tomatoes with starch‑sodium alginate-montmorillonite-star anise oil composite film could reduce the weight loss rate and decay rate of fresh cherry tomatoes. Soil burial experiments showed that the composite films exhibited a continuous biodegradation process. The starch‑sodium alginate-montmorillonite-star anise oil films decomposed into little pieces and were completely mixed in the soil within 22 days, which offered an application foreground for the development of biodegradable food packaging film with bacteriostatic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.