Abstract

In the North Pacific, northern fulmar (Fulmarus glacialis) forms extensive colonies in few locales, which may lead to limited gene flow and locale-specific population threats. In the Atlantic, there are thousands of colonies of varying sizes and in Europe the species is considered threatened. Prior screens and classical microsatellite development in fulmar failed to provide a suite of markers adequate for population genetics studies. The objective of this study was to isolate a suite of polymorphic microsatellite loci with sufficient variability to quantify levels of gene flow, population affinity, and identify familial relationships in fulmar. We also performed a cross-species screening of these markers in eight other species. We used shotgun sequencing to isolate 26 novel microsatellite markers in fulmar to screen for variability using individuals from two distinct regions: the Pacific (Chagulak Island, Alaska) and theAtlantic (Hafnarey Island, Iceland). Polymorphism was present in 24 loci in Chagulak and 23 in Hafnarey, while one locus failed to amplify in either colony. Polymorphic loci exhibited moderate levels of genetic diversity and this suite of loci uncovered genetic structuring between the regions. Among the other species screened, polymorphism was present in one to seven loci. The loci yielded sufficient variability for use in population studies and estimation of familial relationships; as few as five loci provide resolution to determine individual identity. These markers will allow further insight into the global population dynamics and phylogeography of fulmars. We also demonstrated some markers are transferable to other species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.