Abstract

Vascular-targeted drug delivery remains an attractive platform for therapeutic and diagnostic interventions in human diseases. This work focuses on the development of a poly-lactic-co-glycolic-acid (PLGA)-based multistage delivery system (MDS). MDS consists of two stages: a micron-sized PLGA outer shell and encapsulated drug-loaded PLGA nanoparticles. Nanoparticles with average diameters of 76, 119, and 193nm are successfully encapsulated into 3-6µm MDS. Sustained in vitro release of nanoparticles from MDS is observed for up to 7 days. Both MDS and nanoparticles arebiocompatible with human endothelial cells. Sialyl-Lewis-A (sLeA ) is successfully immobilized on the MDS and nanoparticle surfaces to enable specific targeting of inflamed endothelium. Functionalized MDS demonstrates a 2.7-fold improvement in endothelial binding compared to PLGA nanoparticles from human blood laminar flow. Overall, the presented results demonstrate successful development and characterization of MDS and suggest that MDS can serve as an effective drug carrier, which can enhance the margination of nanoparticles to the targeted vascular wall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.