Abstract

Due to recent advances in research on mesenchymal stem cells (MSCs), MSCs are expected to be used in various clinical applications. However, securing adequate cadaveric donors and safety of living donors are major issues. To solve such issues, we have examined to develop clinical grade neonatal porcine bone marrow-derived MSCs (npBM-MSCs). Clinical grade neonatal porcine bone marrow cells were collected, frozen, and sent to our laboratory by air. The npBM-MSCs were isolated from thawed bone marrow cells, then frozen. The thawed npBM-MSCs were examined for CD markers and differentiated into chondrocytes, osteocytes, and adipocytes. They were compared with human bone marrow-derived MSCs (hBM-MSCs) for growth rate and size. To assess the robustness of proliferation, we compared culture medium with or without gelatin. The npBM-MSCs expressed positive MSC markers CD29, CD44, and CD90 and were differentiated into chondrocytes, osteocytes, and adipocytes. The doubling time of npBM-MSCs was significantly shorter than that of hBM-MSCs (17.3±0.8 vs 62.0±19.6hours, P<0.01). The size of npBM-MSCs was also significantly smaller than that of hBM-MSCs (13.1±0.3 vs 17.5±0.4μm, P<0.001). The npBM-MSCs showed similar proliferation characters irrespective of with or without gelatin coating. The npBM-MSCs secreted VEGF-A, VEGF-C, and TGF-β1. We have established npBM-MSCs which show super-rapid growth, small size, and robust proliferation profile. The np-MSCs might be able to solve the donor issues for MSC therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.