Abstract
Nanoporous carbon ultrafiltration membranes could be very attractive for bioprocessing applications, but existing carbon membranes tend to have very low hydraulic permeability due to the large thickness of the carbon layer. We have developed a new method for producing nanoporous carbon membranes using a stainless steel support that has first been modified by slip-casting silica particles into the macropores of the support. The nanoporous carbon membrane is then formed by pyrolysis of polyfurfuryl alcohol with polyethylene glycol used as the pore forming agent. The sub-micron-sized silica particles allow thin integral membranes to be formed after only two or three coats of the polyfurfuryl alcohol. Dextran sieving curves for the nanoporous carbon were similar to those of a commercial 100 kDa polyethersulfone ultrafiltration membrane, with a slightly broader pore size distribution. Performance characteristics for the nanoporous carbon were only slightly below those of commercial polymeric ultrafiltration membranes, but the nanoporous carbon was stable even after prolonged exposure to 3N NaOH. These results demonstrate that high performance nanoporous carbon ultrafiltration membranes can be made using silica-modified stainless steel supports.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.