Abstract
African swine fever virus (ASFV), a re-emerging DNA virus, causes a highly contagious disease for domestic pigs. It is running rife worldwide and threatening the global swine industry. Protein p54 is an attractive candidate for ASFV diagnostic and vaccine design. In this work, we designed a peptide to mimic the N-terminal domain (NTD) of ASFV p54 and pretested it with sera from ASFV-infected pigs. The peptide could be well recognized by the sera, implying that the NTD of p54 contained some potential linear B cell epitopes. Then, the conjugates of the peptide with bovine serum albumin were used as the immunogen to generate monoclonal antibodies (mAbs). A total of six mAbs specific to the NTD of ASFV p54 protein were developed. Five of them well reacted with ASFV HLJ/18 strain and recognized a same linear B cell epitope 5FFQPV9. Furthermore, epitope 5FFQPV9 could be well recognized by ASFV-positive sera from natural infected pigs, suggesting that it was a natural linear B-cell epitope. Conservation analysis indicated that epitope 5FFQPV9 were highly conserved among ASFV epidemic isolates belonging to genotype I and II. Alanine-scanning mutagenesis further revealed that the residues (6F to 9V) of epitope 5FFQPV9 were the core binding sites for antibody recognition. This is the first research to characterize specific mAbs against NTD of p54 protein. These findings may help further understand the function of p54 protein and the improvement of ASFV diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.