Abstract
A novel approach was devised to address the challenges in delivering cisplatin (CIS) for lung cancer treatment. This involved the development of a non-invasive hydrogel delivery system, aiming to minimize side effects associated with its administration. Using carbopol 971 (CP) and chitosan (CH) at varying ratios, the hydrogels were prepared and loaded with eco-friendly iron oxide nanoparticles (IONPs) conjugated to CIS. The physical properties, yield, drug loading, and cytotoxicity against lung cancer cell lines (A549) were assessed, along with hydrogel rheological properties and in vitro drug diffusion. Hydrogel A1 that composed of 1:1 of CP:CH hydrogel loaded with 100 mg IONPs and 250 µg CIS demonstrated distinctive properties that indicate its suitability for potential delivery. The loaded greenly synthesized IONPs@CIS exhibited a particle size of 23.0 nm, polydispersity index of 0.47, yield of 71.6%, with 88.28% drug loading. They displayed significant cytotoxicity (61.7%) against lung cancer cell lines (A549), surpassing free CIS cytotoxicity (28.1%). Moreover, they demonstrated shear-thinning behaviour, viscoelastic properties, and Fickian drug release profile over 24 h (flux 2.34 µg/cm2/h, and permeability 0.31 cm/h).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.