Abstract

An increasing concern for natural resources preservation and environmental safety is the removal of heavy metals from contaminated water. It is essential to develop simple procedures that use ecofriendly materials with high removal capacities. In this context, we have synthesized a new hybrid material in which eggshell membranes (ESMs) act as nucleation sites for magnetite nanoparticles (MNPs) precipitation in the presence of an external magnetic field. As a result, ESM was transformed into a magnetic biomaterial (MESM) in order to combine the Pb adsorption abilities of both MNPs and ESM and to facilitate collection of the bioadsorbant using an external magnetic field. This green co-precipitation method produced long strands of bead-like 50nm superparamagnetic MNPs decorating the ESM fibers. When MESM were incubated in Pb(NO3)2 solutions, the hybrid material displayed a 2.5-fold increase in binding constant with respect to that of ESM alone, and a 10-fold increased capacity to remove Pb ions from aqueous solution. The manufactured MESMs present a maximum loading capacity of 0.066±0.009mgPb/mg MNPs at 25°C, which is increased up to 0.15±0.05mgPb/mg MNPs at 45°C. Moreover, the MESM system is very stable, since incubation in 1% HCl solution resulted in rapid Pb desorption, while MNP release from the MESM during the same period was negligible. Altogether, these results suggest that MESM could be utilized as an efficient nanoremediation agent for separation/removal of heavy metal ions or other charged pollutants from contaminated waters, with facile recovery for recycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call