Abstract

We could successfully fabricate a new composite of La2O3 nanoparticles@snowflake-like Cu2S nanostructure (La2O3 NP@SF-L Cu2S NS composite) for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD) were used to characterize the constructed La2O3 NP@SF-L Cu2S NS composites. The presence of HQ, CT and RS was simultaneously detected on the surface of modified La2O3 NP@SF-L Cu2S NS composites because of unique properties such as large surface area, high electrical conductivity and potent catalytic activity, with the appearance of three distinctive peaks. Moreover, differential pulse voltammetric (DPV), chronoamperometry (CHA) and cyclic voltammetric (CV) were also employed to determine the electrocatalytic profile of CT, HQ and RS on electrode modified with the nanocomposite (La2O3 NP@SF-L Cu2S NS/GCE). There was a significant elevation in the HQ, CT and RS oxidation currents when compared to those on both bare and modified electrodes. The peak of the catalytic current was directly variable based on the concentrations of HQ, CT and RS (0.66 to 266.6 μM), respectively. Further, the limit of detection (LOD) was calculated to be 0.056 μM, 0.058 μM and 0.059 μM for all HQ, CT and RS, respectively. Acceptable outcomes were achieved for the applicability of La2O3 NP@SF-L Cu2S NS/GCE in detecting HQ, CT and RS present in real specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.