Abstract
The goal of this work was to investigate the production and properties of hybrid materials based on poly(lactic acid) (PLA), employing microcrystalline cellulose (MCC) and organophilic silica (R972) as fillers. The composites were obtained by solution casting to form films. Each nanoparticle was incorporated at 3 wt. %, relative to the polymer matrix. In this experiment, four films were obtained (PLA, PLA/MCC, PLA/R972 and PLA/MCC/R972). The films properties were evaluated by X-ray diffractometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy and mechanical properties. The results showed that each nanoparticle, added individually or both combined, had different effect on the final properties of the films. Microcrystalline cellulose can act as nucleating agent for the crystallization of PLA. Silica promoted an increase in rigidity, due to the strong intermolecular forces, while MCC addition promoted an increase in the molecular mobility of the polymeric chains. The PLA/MCC/R972 film showed the highest crystallinity degree and tensile modulus. This film presented a T1H value between both values found for PLA/MCC and PLA/R972 films. The results indicated that silica R972 could promote a decrease of the surface tension between PLA and cellulose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.