Abstract

Bioactive glass, an innovative alloplastic material utilizing a matrix of silica particles combined with calcium and phosphorus, has been widely employed for the regeneration of bony defects due to its bone-forming capabilities and biocompatibility. Nevertheless, it comes with several drawbacks, including a slow degradation rate, low mechanical strength, and susceptibility to fractures. To address these issues, the present research was done to develop and characterize a novel bioactive glass incorporating gadolinium (Gd) and copper (Cu). The bioactive glass doped with Gd and Cu were synthesized and subjected to characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM), and attenuated total reflectance-infrared (ATR-IR) analysis. The bioactive glass, enriched with Gd and Cu, underwent analysis using ATR-IR spectroscopy, XRD, and SEM. ATR-IR revealed characteristic silicate bands, while SEM indicated the presence of particles larger than 4 μm. XRD analysis identified the formation of Na2Ca4(PO4)2SiO4 (Silicorhenatite), Na2Ca2Si3O9 (Combeite), and wollastonite (calcium inosilicate mineral; CaSiO3). The crystalline nature of these compounds contributed to the favorable mechanical properties of the bioactive glass. In summary, the creation of the innovative Gd-Cu-incorporated bioactive glass demonstrates favorable mechanical characteristics, suggesting significant promise for augmenting bone regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call