Abstract

Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2–11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell’s short-tailed bat (Carollia sowelli), Seba’s short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively.

Highlights

  • The Chestnut short-tailed bat (Carollia castanea) is a frugivorous bat which inhabits tropical forests from Honduras to Bolivia, and is the primary seed disperser of many pioneer plant species found in regenerating forests (Lopez & Vaughan, 2007)

  • The goal of this study was to develop the first microsatellite markers for C. castanea using Illumina high-throughput sequencing, to fully characterize these markers using a small sample of individuals from Costa Rica, and to evaluate the transferability of these microsatellites to three other co-distributed bat species: Sowell’s short-tailed bat (Carollia sowelli), Seba’s short-tailed bat (Carollia perspicillata), andthe Jamaican fruit bat (Artibeus jamaicensis)

  • Samples of C. castanea were collected in 13 remnant forest patches in the San Juan-La Selva biological corridor in northern Costa Rica (Table 1), where conversion of tropical lowland forest to agriculture has led to widespread habitat loss and fragmentation

Read more

Summary

Introduction

The Chestnut short-tailed bat (Carollia castanea) is a frugivorous bat which inhabits tropical forests from Honduras to Bolivia, and is the primary seed disperser of many pioneer plant species found in regenerating forests (Lopez & Vaughan, 2007). Throughout this species’ range, rapid conversion of native forest cover to agriculture is driving habitat loss and fragmentation, which threatens the ability of C. castanea populations to maintain genetic connectivity. Despite the utility of microsatellite markers for evaluating population responses to recent land use change, no microsatellite loci have previously been developed for C. castanea. Of the seven currently recognized species in the Carollia genus (Velazco, 2013), microsatellite markers have only been developed for one, Carollia brevicauda (Bardeleben et al, 2007); these authors successfully cross-amplified eight microsatellites to C. castanea

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call