Abstract

Diabetic wounds present a significant global health challenge exacerbated by chronic hyperglycemia-induced oxidative stress, impeding the natural healing process. Despite various treatment strategies, diabetic foot ulceration lacks standardized therapy. Ferulic acid (FA), known for its potent antidiabetic and antioxidant properties, holds promise for diabetic wound management. However, oral administration of FA faces limitations due to rapid oxidation, stability issues, and low bioavailability. The topical application of FA-loaded chitosan nanoparticles (FA-CSNPs) has emerged as a promising approach to overcome these challenges. Here, we report the development of a sustained-release formulation of FA-CSNPs within a hydrogel matrix composed of Chitosan and gelatin. The FA-CSNPs were synthesized using the ionic gelation method andoptimized through a Central Composite Design (CCD) approach. Characterization of the optimized nanoparticles revealed spherical morphology, a particle size of 56.9 ± 2.5 nm, and an impressive entrapment efficiency of 90.3 ± 2.4 %. Subsequently, an FA-CSNPs-loaded hydrogel was formulated, incorporating chitosan as a gelling agent, gelatin to enhance mechanical properties and cell permeation, and glutaraldehyde as a cross-linker. Comprehensive characterization of the hydrogel included pH, moisture loss, porosity, swelling index, rheology, water vapor transmission rate (WVTR), SEM, TEM, invitro drug release studies, antioxidant activity, antibacterial efficacy, cell cytotoxicity, cell migration studies on L929 fibroblast cell line, and stability studies. The stability study demonstrated negligible variations in particle size, zeta potential, and entrapment efficiency over 60 days, ensuring the stable nature of nanoparticles and hydrogel. This innovative delivery approach embedded within a hydrogel matrix holds significant promise for enhancing the therapeutic efficacy of FA-CSNPs-hydrogel in diabetic wound healing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.