Abstract

The aim of this work was to develop effective fast-dissolving tablet formulations of glyburide, endowed with improved dissolution and technological properties, investigating the actual effectiveness of the Solid-Self MicroEmulsifying Drug Delivery System (S-SMEDDS) approach. An initial screening aimed to determine the solubility of the drug in different oils, Surfactants and CoSurfactants allowed the selection of the most suitable components for liquid SMEDDS, whose relative amounts were defined by the construction of pseudo-ternary phase diagrams. The selected liquid SMEDDS formulations (Capyol 90 as oil, Tween 20 as Surfactant and Glycofurol or Transcutol as CoSurfactant) were converted into Solid-SMEDDS, by adsorbing them onto Neusilin (1:1 and 1:0.8w/w S-SMEDDS:carrier), and fully characterized in terms of solid state (DSC and X-ray powder diffraction), morphological (ESEM) and dissolution properties, particle size and reconstitution ability. Finally, the 1:1 S-SMEDDS containing Glycofurol as CoSurfactant, showing the best performance, was selected to prepare two final tablet formulations. The ratio test (t10 min ratio and DE60 ratio) and pair-wise procedures (difference (f1) and similarity (f2) factors) highlighted the similarity of the new developed tablets and the marked difference between their drug dissolution profiles and those of formulations based on the micronized drug. The S-SMEDDS approach allowed to develop fast-dissolving tablets of glyburide, endowed with good technological properties and able to achieve the complete drug dissolution in a time ranging from 10 to 15min, depending on the formulation composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call