Abstract

Polymeric electrospun nanofibers have been gaining notoriety in the same way as their industrial applications, since the manufacturing of this type of material is simple and low-costed. In order to obtain fibrous polymeric material with small diameters and with reduced beads formation, a 24 factorial experiment with triplicate at center point was performed. Cellulose acetate (CA) and cationic cetylpyridinium bromide (CPB) surfactant nanofibers were made using a homemade electrospinning apparatus. The assessed inputs were as follows: CA%, CPB%, flow rate, and applied voltage. From the analysis of the response surface methodology and scanning electron microscope (SEM), the optimal concentrations of CA and CPB for producing nanofibers were 21 w/v-% and 0.5 w/v-%, respectively, using a flow rate of 0.7 mL h−1 and applied voltage of 18 kV. Fibers mats morphology shows average diameter of 0.2 μm and 7 nm pore size, as well as it was found that the single fiber unit presented nanoheterogeneity. Mechanical resistance of 2.70 MPa was obtained in the tensile strength test. The modification of CA by the addition of surfactant attributed better thermal and mechanical resistances to the nanofibers without, however, affecting their biodegradability and water resistance properties. The morphological characteristics of the newly obtained CA/CPB nanofibers combined with mechanical resistance provided subsidies to suggest that the as-obtained material presents potential to be applied as an air filter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.