Abstract

In this study, four types of ecofriendly non-woven materials were developed from different parts of bark and leaf of banana plant i.e. outer bark, middle bark, inner bark (IB) and mid rib (MR) by wet laid web formation. Fibers were extracted chemically by treating with NaOH from all the parts. Due to the very high absorbency of banana fiber, the prepared non-wovens were treated with water repellent (WR) chemical for improving their hydrophobicity. The effects of WR on the physical, mechanical and morphological properties of the non-wovens were also investigated. The hydrophobicities of all the nonwovens were improved remarkably with the concentration of WR. It took 1.25, 2.69, 4.20 and 4.67 h to absorb a drop of water for OB nonwovens at a concentration of 1%, 5%, 10% and 20% WR respectively where, all the untreated nonwovens took almost zero seconds. Just like OB, all other nonwovens followed exactly the same trend. OB nonwoven exhibited the highest tensile strength (TS), Elongation-at-break (EB) and young‘s modulus (YM) of 8.56 Mpa, 12.56% and 215 Mpa respectively where, IB showed the lowest TS and YM of 1.23 and 67 Mpa respectively and MR showed the lowest EB of 1.77%. Although there were no remarkable effects of WR on tensile properties nevertheless, TS and YM were increased but EB was decreased to a small extent with the concentration of WR. The chemical bonding, morphology of the fiber and nonwovens were also investigated by FTIR and SEM analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.