Abstract

Tetraethylenetetramine (TETA), 3-aminopropylethoxysilane-treated ZrO2 nanoparticles, and diglycidyl ethers of bisphenol-A (DGEBA) were used to create an epoxy nanocomposite (DGEBA-APTES-ZrO2). The newly synthesized APTES-ZrO2 was evaluated using FTIR, XRD, SEM, AFM, TEM and elemental analysis for structural and compositional analysis. Due to its resilience in acidic, basic and saline conditions, mild steel is crucial in sectors like shipbuilding and the automobile industry. ZrO2 nanoparticles have excellent corrosion resistance. As a result, it is intended to prepare DGEBA-APTES-ZrO2 for a barrier layer that prevents corrosion on mild steel surfaces. FTIR spectroscopy tests provided proof of DGEBA-APTES-ZrO2-coated mild steel’s ability to limit corrosion and microbiological growth. Using salt spray and an electrochemical impedance technique, corrosion inhibition was evaluated. On mild steel surfaces, DGEBA-APTES-ZrO2 nanohybrid coatings demonstrated excellent corrosion prevention and antifouling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call