Abstract
The use of extracellular matrix (ECM)-derived hydrogels in tissue engineering has become increasingly popular, as they can mimic cells' natural environment in vitro. However, maintaining the native biochemical content of the ECM, achieving mechanical stability, and comprehending the impact of the decellularization process on the mechanical properties of the ECM hydrogels are challenging. Here, a pipeline for decellularization of bovine lung tissue using two different protocols, downstream characterization of the effectiveness of decellularization, fabrication of reconstituted decellularized lung ECM hydrogels and assessment of their mechanical and cytocompatibility properties were described. Decellularization of the bovine lung was pursued using a physical (freeze-thaw cycles) or chemical (detergent-based) method. Hematoxylin and Eosin staining was performed to validate the decellularization and retention of major ECM components. For the evaluation of residual collagen and sulfated glycosaminoglycan (sGAG) content within the decellularized samples, Sirius red and Alcian blue staining techniques were employed, respectively. Mechanical properties of the decellularized lung ECM hydrogels were characterized by oscillatory rheology. The results suggest that decellularized bovine lung hydrogels can provide a reliable organotypicalternative to commercial ECM products by retaining most native ECM components. Furthermore, these findings reveal that the decellularization method of choice significantly affects gelation kinetics as well as the stiffness and viscoelastic properties of resulting hydrogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.