Abstract

The morphology of fibers synthesized through electrospinning has been found to mimic extracellular matrix. Coaxially electrospun fibers of gelatin (sheath) coated poly (3-hydroxybutyric acid) (PHB) (core) was developed using 2,2,2 trifluoroethanol(TFE) and 1,1,1,3,3,3 hexafluoro-2-propanol(HFIP) as solvents respectively. The coaxial structure and coating of gelatin with PHB fibers was confirmed through transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Thermal stability of the coaxially electrospun fibers was analyzed using thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and differential thermogravimetric analysis(DTA). Complete evaporation of solvent and gelatin grafting over PHB fibers was confirmed through attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR). The coaxially electrospun fibers exhibited competent tensile properties for skin regeneration with high surface area and porosity. In vitro degradation studies proved the stability of fibers and its potential applications in tissue engineering. The fibers supported the growth of human dermal fibroblasts and keratinocytes with normal morphology indicating its potential as a scaffold for skin regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.