Abstract
In the present study, chitosan-coated nanoliposomes were prepared using thin-film hydration method, as a practical delivery system for encapsulation of caffeine. Response surface methodology (RSM) was applied to determine the optimum conditions for preparation of nanoliposomes based on the encapsulation efficiency, lightness (L*), electrical conductivity and stability. The morphological analysis demonstrated that the developed nanoliposomes were spherical particles with a homogenous distribution and smooth surfaces. The particle size of the samples determined by dynamic light scattering was higher than that observed by field emission scanning electron microscopy (FESEM). The surface charges of nanoliposome and chitosome were −25 and 31.9 mV, respectively, exhibiting a relatively stable nanostructure. Differential scanning calorimetry (DSC) revealed that there existed a broad peak at 226.74 °C. On the basis of the release profile of the developed nanostructured vehicles, most of caffeine released in the small intestine and chitosan-coated nanoliposomes presented a slower release rate compared to the nanoliposomal system. Kopcha model could describe the release behavior of cafeine from fabricated carriers. Overall, the results showed the potential of chitosomes for caffeine retention and sustained release in the digestive system, bearing more advantages compared to nanoliposomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.