Abstract

Pulsatile hemodynamics analyses provide important information about the ventricular-arterial system which cannot be inferred by standard blood pressure measurements. Pulse wave analysis (PWA), wave separation analysis (WSA), and wave power analysis (WPA) characterize arterial hemodynamics with limited preclinical applications. Integrating these tools into preclinical testing may enhance understanding of disease or therapeutic effects on cardiovascular function. We used a canine rapid ventricular pacing (RVP) heart failure model to: (1) Characterize hemodynamics in response to RVP and (2) assess analyses from flow waveforms synthesized from pressure compared to those derived from measured flow. Female canines (n = 7) were instrumented with thoracic aortic pressure transducers, ventricular pacing leads, and an ascending aortic flow probe. Data were collected at baseline, 1 week, and 1 month after RVP onset. RVP progressively reduced stroke volume (SV), the PWA SV estimator, and WSA and WPA pulsatility and wave reflection indices. Indices derived from synthesized flow exhibited similar directional changes and high concordance with measured flow calculations. Our data demonstrate the value of analytical hemodynamic methods to gain deeper insight into cardiovascular function in preclinical models. These approaches can provide complementary value to standard endpoints in evaluating potential effects of pharmaceutical agents intended for human use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.