Abstract

The formation of biofilm by Streptococcus mutans on the tooth surface is the primary cause of dental caries and periodontal diseases, and fluoride (F) has shown tremendous potential as a therapeutic moiety against these problems. Herein, we report an efficient multi-ingredient bioadhesive film-based delivery system for oral cavity to combat dental problems with an ease of administration. Thiolated chitosan-based bioadhesive film loaded with calcium fluoride nanoparticles (CaF2 NPs) and lignocaine as a continuous reservoir for prolonged delivery was successfully prepared and characterized. The polygonal CaF2 NPs with an average particle size less than 100nm, PDI 0.253, and + 6.10mV zeta potential were synthesized and loaded in film. The energy dispersive x-ray (EDX) spectroscopy confirmed the presence 33.13% F content in CaF2 NPs. The characterization of the three film trials for their mechanical strength, bioadhesion, drug release, and permeation enhancement suggested film B as better among the three trials and showed significant outcomes, indicating the potential application of the medicated bioadhesive film. In vitro dissolution studies revealed sustained release pattern of lignocaine and CaF2 NP following Krosmeyer-Peppas model over 8h. Franz diffusion studies showed the prolonged contact time of film with mucosa that facilitated the transport of CaF2 NPs and lignocaine across the mucosa. Hence, the prepared bioadhesive film-based system showed good potential for better management of dental problems. Graphical Abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.