Abstract

In vitro intestinal models are used to study biological processes, drug and food absorption, or cytotoxicity, minimizing the use of animals in the laboratory. They usually consist of enterocytes and mucus-producing cells cultured for 3 weeks, e.g., on Transwells, to obtain a fully differentiated cell layer simulating the human epithelium. Other important components are the extracellular matrix (ECM) and strong vascularization. The former serves as structural support for cells and promotes cellular processes such as differentiation, migration, and growth. The latter includes endothelial cells, which coordinate vascularization and immune cell migration and facilitate the transport of ingested substances or drugs to the liver. In most cases, animal-derived hydrogels such as Matrigel or collagen are used as ECM in in vitro intestinal models, and endothelial cells are only partially considered, if at all. However, it is well-known that animal-derived products can lead to altered cell behavior and incorrect results. To circumvent these limitations, synthetic and modifiable hydrogels (Peptigel and Vitrogel) were studied here to mimic xenofree ECM, and the data were compared with Matrigel. Careful rheological characterization was performed, and the effect on cell proliferation was investigated. The results showed that Vitrogel exhibited shear-thinning behavior with an internal structure recovery of 78.9 ± 11.2%, providing the best properties among the gels investigated. Therefore, a coculture of Caco-2 and HT29-MTX cells (ratio 7:3) was grown on Vitrogel, while simultaneously endothelial cells were cultured on the basolateral side by inverse cultivation. The model was characterized in terms of cell proliferation, differentiation, and drug permeability. It was found that the cells cultured on Vitrogel induced a 1.7-fold increase in cell proliferation and facilitated the formation of microvilli and tight junctions after 2 weeks of cultivation. At the same time, the coculture showed full differentiation indicated by high alkaline phosphatase release of Caco-2 cells (95.0 ± 15.9%) and a mucus layer produced by HT29-MTX cells. Drug tests led to ex vivo comparable permeability coefficients (Papp) (i.e., Papp; antipyrine = (33.64 ± 5.13) × 10-6 cm/s, Papp; atenolol = (0.59 ± 0.16) × 10-6 cm/s). These results indicate that the newly developed intestinal model can be used for rapid and efficient assessment of drug permeability, excluding unexpected results due to animal-derived materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.