Abstract

The objectives of this study were to characterize fresh porcine menisci and develop a decellularization protocol with a view to the generation of a biocompatible and biomechanically functional scaffold for use in tissue engineering/regeneration of the meniscus. Menisci were decellularized by exposing the tissue to freeze-thaw cycles, incubation in hypotonic tris buffer, 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease inhibitors, nucleases, hypertonic buffer followed by disinfection using 0.1% (v/v) peracetic acid and final washing in phosphate-buffered saline. Histological, immunohistochemical, and biochemical analyses of the decellularized tissue confirmed the retention of the major structural proteins. There was, however, a 59.4% loss of glycosaminoglycans. The histoarchitecture was unchanged, and there was no evidence of the expression of the major xenogeneic epitope, galactose-alpha-1,3-galactose. Biocompatibility of the acellular scaffold was determined by using contact cytotoxicity and extract cytotoxicity tests. Decellularized tissue and extracts were not cytotoxic to cells. Biomechanical properties were determined by indentation and tensile tests, which confirmed the retention of biomechanical properties following decellularization. In conclusion, this study has generated data on the production of a biocompatible, biomechanically functional scaffold for use in meniscal repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.