Abstract

In the present study, nanoparticles of low MW chitosan (CS) were formulated in which measles antigen was entrapped and subsequently coated with sodium alginate. The size and surface properties of the nanoparticle can be tuned with different MW of CS. In vitro release studies showed initial burst release followed by extended release, best fitted in the Makoid-Banakar model (R(2)>0.98). SDS-PAGE assay revealed that alginate coating could effectively protect antigen in acidic condition for at least 2h. Cell viability was assessed using MTT assay into HT 29 cell line. Formulations were orally administered to mice and immunological responses were evaluated using ELISA method. Obtained results showed that measles antigen-loaded CS nanoparticles induced strong immune response and significant correlation was observed between the immune response with CS MW. Protecting ability of antigen in gastric environment, sustained release kinetics, systemic and mucosal immune responses and low cytotoxicity observed for the alginate coated nanoparticles demonstrated that LMW CS could be promising platform for oral vaccine delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.