Abstract

Surgeons have used cryopreserved vascular allografts successfully for many years to treat arterial occlusive disease and to repair arterial aneurysms. Vascular allografts demonstrate high patency rates but contain viable cells, which may evoke a rejection response following implantation. Removing the cells could prevent such a response and negate the need for cryopreservation and ultra-low temperature storage. The objectives of the study were to characterize human common femoral arteries and develop a decellularization protocol with a view to the generation of biocompatible and biomechanically functional vascular grafts for use in vascular bypass and arteriovenous access. The arteries were decellularized by subjecting the tissue to a single freeze-thaw cycle followed by sequential incubation in hypotonic tris buffer and low concentration sodium dodecyl sulphate. Each artery was disinfected using 0.1% (v/v) peracetic acid. Histological analysis demonstrated a lack of cells following decellularization and confirmed the integrity of the tissue histioarchitecture and retention of major structural proteins. There was a >95% reduction in DNA levels. The acellular tissues and extracts were not cytotoxic to either mouse 3T3 or baby hamster kidney cells. Biomechanical properties were determined by burst pressure, compliance, and tensile tests, which confirmed the retention of biomechanical properties following decellularization. In conclusion the study has developed a suitable protocol for the removal of cells from human common femoral arteries without adversely affecting the biochemical or biomechanical properties. These properties indicate the potential use for acellular human common femoral arteries for vascular bypass or arteriovenous access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call