Abstract

The growing interest in the therapeutic potential of cannabidiol (CBD) has led to the need for effective and reliable delivery methods that overcome its low oral absorption. Zeolites, a class of porous nanoparticles, offer unique advantages as drug carriers due to their high surface area and adjustable pore size. In this study, a zeolite-based drug delivery system was developed for the encapsulation of CBD. The zeolite particles were characterized using various techniques such as Scanning Electron Microscopy (SEM), N2 adsorption analysis, Solid-state Fourier Transform Infrared (FTIR), Direct Light Scattering (DLS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) before and after the loading. The drug encapsulation efficiency, and the release profile of CBD from the zeolite matrix were evaluated in addition to in vitro dissolution experiments in the intestinal and gastric simulated fluids. The results showed that the loaded zeolite particles exhibited high encapsulation efficiency of 73.5 %. XRD analysis proved that the USY structure remained intact after loading with CBD. DLS and N2 adsorption analysis indicated that CBD was successfully loaded into the zeolite matrix. When compared to CBD containing particles in a commercialized capsule, the in-vitro dissolution rate of CBD loaded zeolite was significantly higher after 30 min in the simulated stomach (pH 1.8) and the intestinal (pH 6.8) fluids, 67.8 % versus 43.6 % and 62.6 % vs 38.4 % respectively. Our findings open new avenues for the use of zeolites as an efficient drug delivery system for drugs with low bioavailability like CBD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.