Abstract

This study focuses on the development of an advanced high heating rate thermobonding process for the manufacture of preforms and the metrological characterisation of the process. The process involves passing hot air, driven by pressure differential, through a textile stack consisting of several plies of a quadraxial fabric coated with a binder. Heat is transferred into the stack and into the binder by forced convection, melting the binder. The process is used in the same way to cool the stack and binder so that the plies are bonded together. The pressure differential compacts the stack. The comprehensive methodological characterisation of the process includes first determining the air permeability of the stack and thus the volume flow of air as a function of the number of plies stacked. Further characterisation focuses on a comprehensive determination of the heating behaviour in the individual plies as a function of time, using thermocouples and thermal imaging to determine the temperatures of hot air and textiles. These are compared and related using a mathematical approach as different values have been found. The results indicate high heating rates, reducing process time by at least 85% compared to previous binder activation methods. In addition, the cantilever method assesses the flexural stiffness of the processed stacks and shows a twofold improvement in bond strength compared to uncompacted stacks. Results and discussions include orifice based volume flow determination, thermography calibration, mathematical modelling, stiffness of bonded textile plies, process comparison, process control and potential energy savings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call