Abstract

To facilitate the development of new brain metastasis (BM) treatment, an easy-to-use and clinically relevant animal model with imaging platform is needed. Rhabdomyosarcoma BM was induced in WAG/Rij rats. Post-implantation surveillance and characterizations were systematically performed with multiparametric MRI including 3D T1 and T2 weighted imaging, diffusion-weighted imaging (DWI), T1 and T2 mapping, and perfusion-weighted imaging (PWI), which were validated by postmortem digital radiography (DR), µCT angiography and histopathology. The translational potential was exemplified by the application of a vascular disrupting agent (VDA). BM was successfully induced in most rats of both genders (18/20). Multiparametric MRI revealed significantly higher T2 value, pre-contrast-enhanced (preCE) T1 value, DWI-derived apparent diffusion coefficient (ADC) and CE ratio, but a lower post-contrast-enhanced (postCE) T1 value in BM lesions than in adjacent brain (p < 0.01). PWI showed the dynamic and higher contrast agent uptake in the BM compared with the adjacent brain. DR, µCT and histopathology characterized the BM as hypervascular tumors. After VDA treatment, the BM showed drug-related perfusion changes and partial necrosis as evidenced by anatomical, functional MRI parameters and postmortem findings. The present BM model and imaging modalities represent a feasible and translational platform for developing BM-targeting therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.