Abstract

Breast cancer frequently metastasizes to the skeleton causing significant morbidity. None of the therapeutic strategies used to manage breast cancer bone metastases are really curative. Here, we set-up a novel and advanced model by using fresh tissue from human vertebral bone metastasis from breast carcinoma patients able to retain the tumor microenvironment. The tissue model is based on an ex-vivo culture for up to 40days and on a constant monitoring of tissue viability, gene expression profile (IL10, IL1b, MMP1, MMP7, PTH1R, PTH2R, TNF, ACP5, SPI1, VEGFA, CTSK, TGF-β) and histological and immunohistochemical analyses (CDH1/E-cadherin, CDH2/N-cadherin, KRT8/Cytokeratin 8, KRT18/Cytokeratin 18, Ki67, CASP3/Caspase 3, ESR1/Estrogen Receptor Alpha, CD68 and CD8). Results confirmed the development of a reliable, reproducible and cost-effective advanced model of breast cancer bone metastasis able to preserve and maintain long-term tissue viability, as well as molecular markers, tissue histomorphology, tissue micro-architecture and antigen expression. The study provides for the first time the feasibility and rationale for the use of a human-derived advanced alternative model for cancer research and testing of drugs and innovative strategies, taking into account patient individual characteristics and specific tumor subtypes so predicting patient specific responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.