Abstract

PurposeThere is an increasing demand for higher-accuracy dimensional measurements of nano- and micro-structures. Recently, the authors presented a fiber Bragg grating (FBG) sensor-based dynamic nano-coordinate-measuring machine (CMM) probe for true three-dimensional coordinate measurement, in which a specific mechanical structure with several FBG sensors was developed to provide the probe with sensitivity to loading in all directions.Design/methodology/approachThe study presents a three-dimensional sensing and demodulation system based on an improved matched filter design and the time division multiplexing technique that helps solve the problem of multiplex FBG-signals conflicts. In addition, the application of the dynamic mode of the probe system effectively solves the problem presented by the surface interaction forces.FindingsConsequently, this FBG-based vibrating probe system has increased sensitivity to strain, while maintaining smaller contact force. The experiments for testing probe performance show that the prototype yielded a measurement resolution of 13 nm, a repeatability of 50 nm and a vertical measurement force of less than1.5 mN.Research limitations/implicationsThe force tests in the horizontal directions are difficult to conduct because both the probe and the dynamometer are only adaptable to vertical use.Practical implicationsDevelopment of the FBG-based dynamic nano-coordinate-measuring machine probe will achieve a new and inexpensive method for higher-accuracy dimensional measurements of nano- and micro-structures, such as micro-electromechanical systems, micro-fluidic chips, inkjet and diesel engine injector nozzles that are in overall dimensions within the micrometer scale.Originality/valueThe study presents a three-dimensional sensing and demodulation system for the vibrating nano-coordinate-measuring machine probe based on FBG sensors. The prototype yielded a measurement resolution of 13 nm, a repeatability of 50 nm and a vertical measurement force of less than1.5 mN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.