Abstract

Abstract Monitoring the stress of steel strands, from initial tension to eventual failure, is paramount for assessing structural safety and understanding its failure mechanism. Current monitoring methods are restricted in measuring stress only until yielding because of their limited range. This study proposes a novel coaxial strain-sensing cable (CSSC) based intelligent steel strand (CSSC-ISS), which has both functions of force-bearing and self-sensing. First, the prototype design of CSSC-ISS and the sensing principle of CSSC are introduced. Then, a fabrication method of small-diameter CSSC is proposed, which is then encapsulated with glass fiber reinforced polymer (GFRP) material, forming a GFRP sensing rod (GFRP-SR). The next step involves replacing the strandโ€™s central wire with the GFRP-SR, culminating in the creation of the CSSC-ISS. Finally, Laboratory tests show that the CSSC has excellent strain-sensing performance with a resolution of at least 100 ยตฮต and a measurement range of 150,000 ยตฮต. The GFRP-SR offers good sensing potential and comparable mechanical strength to standard GFRP rods. Notably, the CSSC-ISS could measure stress up to strand failure, retaining 87.9% tensile strength and 88.7% elastic modulus compared to standard steel strands. It is verified that the CSSC-ISS can consistently measure its stress condition throughout its life cycle without compromising its load-bearing potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call