Abstract

The HANARO neutron irradiation facility for various applications in the boron neutron capture therapy (BNCT) field was developed, and its characteristics were investigated. In order to obtain the sufficient thermal neutron flux with a low level of contamination by fast neutrons and gamma rays, a radiation filtering method was adopted. The radiation filter was designed by using a silicon single crystal, cooled by liquid nitrogen, and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room was finished. Neutron beam characteristics were measured by using bare and cadmium-covered gold foils and wires. The in-phantom neutron flux distribution was measured for flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimental data. The thermal neutron flux and Cd ratio available at this facility were confirmed to be 1.49 × 109 n cm−2 s−1 and 152, respectively. The maximum neutron flux inside the phantom was measured to be 2.79 × 109 n cm−2 s−1 at a depth of 3 mm in the phantom. The two-dimensional in-phantom neutron flux distribution was determined, and significant neutron irradiation was observed within 20 mm from the phantom surface. The gamma-ray dose rate for the free beam condition was expected to be about 80 cGy h−1. These experimental results were reasonably well supported by calculation using the facility design code. This HANARO thermal neutron facility can be used not only for clinical trials, but also for various pre-clinical studies in the BNCT field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call