Abstract

BACKGROUND: Manual wheelchair users are at a high risk of repetitive strain injuries, carpal tunnel syndrome, and rotator cuff tears due to propelling their wheelchair for mobility. Rolling resistance (RR) is one of the key forces that leads to increased propulsion forces and risk of injuries. OBJECTIVE: To better understand the factors contributing to RR, we iteratively designed, developed, and validated a drum-based testing machine and test method. METHODS: As part of the validation of the system, we tested and compared 4 manual wheelchair wheels under a range of conditions including camber, toe in/out, tire pressure, surfaces, and speed. A treadmill was employed to simulate flat ground RR. RESULTS: A machine was effectively designed, developed, and tested to measure RR. Tire type, surfaces, and toe were found to be the largest contributors to RR. Comparison of the drum-based system to flat ground revealed that an offset can be used to calculate overground RR from drum measurements. CONCLUSIONS: Ongoing work includes performing a comprehensive analysis of the degree to which each factor contributes to RR of commonly used casters and rear-wheels so that the wheelchair sector can work to reduce RR and the associated risk of repetitive strain injuries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.